25 min read

Chow test and more

Chow test

Comparing coefficients across regressions is common. Chow test is one of them. If you’d like to compare coefficients of regressions for two subsets, that’s the original Chow test.

The idea is to interact the subset indicator with all the covariates or only the covariate you are interested (treatment). If you only interact the dummy with the treatment variable, then you are assuming all other covariates have the same effect across the two subsets. This may or may not be reasonable.

This post is inspired by Austin Nicholas (https://www.stata.com/statalist/archive/2009-11/msg01485.html). The case with overlapping samples is all from his code.

Let’s see a simple example:


est clear
sysuse nlsw88, clear
reg wage hours if south
est sto south
reg wage hours if !south
est sto nonsouth
suest south nonsouth
est sto suest
gen hours1=hours*(south==1)
gen hours2=hours*(south==0)
reg wage south hours?
est sto chow
test _b[hours1]-_b[hours2]=0
esttab south nonsouth suest chow, nogaps mti
(NLSW, 1988 extract)

      Source |       SS           df       MS      Number of obs   =       938
-------------+----------------------------------   F(1, 936)       =     12.47
       Model |  344.732583         1  344.732583   Prob > F        =    0.0004
    Residual |  25866.3404       936   27.634979   R-squared       =    0.0132
-------------+----------------------------------   Adj R-squared   =    0.0121
       Total |  26211.0729       937   27.973397   Root MSE        =    5.2569

------------------------------------------------------------------------------
        wage | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       hours |   .0623497   .0176532     3.53   0.000     .0277053    .0969941
       _cons |   4.520583   .6957145     6.50   0.000     3.155242    5.885923
------------------------------------------------------------------------------

      Source |       SS           df       MS      Number of obs   =     1,304
-------------+----------------------------------   F(1, 1302)      =     55.93
       Model |  1929.41943         1  1929.41943   Prob > F        =    0.0000
    Residual |  44919.1023     1,302  34.5000785   R-squared       =    0.0412
-------------+----------------------------------   Adj R-squared   =    0.0404
       Total |  46848.5217     1,303  35.9543528   Root MSE        =    5.8737

------------------------------------------------------------------------------
        wage | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       hours |   .1107536     .01481     7.48   0.000     .0816995    .1398076
       _cons |   4.357811    .564756     7.72   0.000      3.24988    5.465743
------------------------------------------------------------------------------



Simultaneous results for south, nonsouth                 Number of obs = 2,242

------------------------------------------------------------------------------
             |               Robust
             | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
south_mean   |
       hours |   .0623497   .0174426     3.57   0.000     .0281629    .0965366
       _cons |   4.520583   .6599379     6.85   0.000     3.227128    5.814037
-------------+----------------------------------------------------------------
south_lnvar  |
       _cons |   3.319082   .1435305    23.12   0.000     3.037768    3.600397
-------------+----------------------------------------------------------------
nonsouth_m~n |
       hours |   .1107536   .0134936     8.21   0.000     .0843066    .1372006
       _cons |   4.357811   .4633326     9.41   0.000     3.449696    5.265927
-------------+----------------------------------------------------------------
nonsouth_l~r |
       _cons |   3.540962   .1006119    35.19   0.000     3.343766    3.738157
------------------------------------------------------------------------------


(4 missing values generated)

(4 missing values generated)

      Source |       SS           df       MS      Number of obs   =     2,242
-------------+----------------------------------   F(3, 2238)      =     36.91
       Model |  3502.37892         3  1167.45964   Prob > F        =    0.0000
    Residual |  70785.4426     2,238  31.6288841   R-squared       =    0.0471
-------------+----------------------------------   Adj R-squared   =    0.0459
       Total |  74287.8215     2,241  33.1494072   Root MSE        =     5.624

------------------------------------------------------------------------------
        wage | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       south |   .1627711   .9199871     0.18   0.860    -1.641346    1.966888
      hours1 |   .0623497   .0188858     3.30   0.001     .0253142    .0993852
      hours2 |   .1107536   .0141803     7.81   0.000     .0829456    .1385616
       _cons |   4.357811   .5407453     8.06   0.000     3.297397    5.418226
------------------------------------------------------------------------------



 ( 1)  hours1 - hours2 = 0

       F(  1,  2238) =    4.20
            Prob > F =    0.0405


----------------------------------------------------------------------------
                      (1)             (2)             (3)             (4)   
                    south        nonsouth           suest            chow   
----------------------------------------------------------------------------
main                                                                        
hours              0.0623***        0.111***       0.0623***                
                   (3.53)          (7.48)          (3.57)                   
south                                                               0.163   
                                                                   (0.18)   
hours1                                                             0.0623***
                                                                   (3.30)   
hours2                                                              0.111***
                                                                   (7.81)   
_cons               4.521***        4.358***        4.521***        4.358***
                   (6.50)          (7.72)          (6.85)          (8.06)   
----------------------------------------------------------------------------
south_lnvar                                                                 
_cons                                               3.319***                
                                                  (23.12)                   
----------------------------------------------------------------------------
nonsouth_m~n                                                                
hours                                               0.111***                
                                                   (8.21)                   
_cons                                               4.358***                
                                                   (9.41)                   
----------------------------------------------------------------------------
nonsouth_l~r                                                                
_cons                                               3.541***                
                                                  (35.19)                   
----------------------------------------------------------------------------
N                     938            1304            2242            2242   
----------------------------------------------------------------------------
t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001

In the above example, we are interested in the effect of hours on wage for south and non-south subsets. The Chow test is to use the entire sample which has both south and nonsouth data. Then use the interaction of south indicator and hours to find the effect of hours for south and nonsouth. By including these two subsamples in the same regression, we can test the equality of the two coefficients.

The other way to do this is to use Stata’s “suest” command. This command basically take the two regressions and the variance covariance structure; then a test of the difference between two coefficients can be done. However, “suest” does not work for some commands. In my opinion, using interaction can be more flexible.

A comparison with two different outcomes

We can also use the same idea to compare the effect of some treatment on two different outcomes, if we have the same set of covariates. We just need to “stack” the two outcomes and run a pooled regression with some interactions.

Here is an example.



est clear
sysuse nlsw88, clear
reg south wage hours 
est sto south
reg smsa wage hours 
est sto smsa
suest south smsa
est sto suest
preserve
gen Y1=south
gen Y2=smsa
gen id=_n
reshape long Y, i(id) j(subsample)
gen wage1=wage*(subsample==1)
gen wage2=wage*(subsample==2)
gen hours1=hours*(subsample==1)
gen hours2=hours*(subsample==2)
reg Y wage? hours? subsample
test _b[wage1]-_b[wage2]=0
est sto stacked
esttab south smsa suest stacked, nogaps mti
(NLSW, 1988 extract)

      Source |       SS           df       MS      Number of obs   =     2,242
-------------+----------------------------------   F(2, 2239)      =     30.60
       Model |   14.513685         2  7.25684251   Prob > F        =    0.0000
    Residual |  531.049205     2,239  .237181423   R-squared       =    0.0266
-------------+----------------------------------   Adj R-squared   =    0.0257
       Total |   545.56289     2,241   .24344618   Root MSE        =    .48701

------------------------------------------------------------------------------
       south | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
        wage |  -.0124053   .0018099    -6.85   0.000    -.0159545    -.008856
       hours |   .0047722   .0009916     4.81   0.000     .0028277    .0067167
       _cons |   .3372108   .0387354     8.71   0.000     .2612497    .4131718
------------------------------------------------------------------------------

      Source |       SS           df       MS      Number of obs   =     2,242
-------------+----------------------------------   F(2, 2239)      =     36.17
       Model |  14.6274602         2  7.31373012   Prob > F        =    0.0000
    Residual |  452.719551     2,239  .202197209   R-squared       =    0.0313
-------------+----------------------------------   Adj R-squared   =    0.0304
       Total |  467.347012     2,241  .208543959   Root MSE        =    .44966

------------------------------------------------------------------------------
        smsa | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
        wage |   .0139103   .0016711     8.32   0.000     .0106332    .0171873
       hours |   .0003663   .0009155     0.40   0.689    -.0014291    .0021616
       _cons |   .5820585   .0357648    16.27   0.000      .511923    .6521941
------------------------------------------------------------------------------



Simultaneous results for south, smsa                     Number of obs = 2,242

------------------------------------------------------------------------------
             |               Robust
             | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
south_mean   |
        wage |  -.0124053   .0019287    -6.43   0.000    -.0161854   -.0086251
       hours |   .0047722   .0009825     4.86   0.000     .0028465    .0066978
       _cons |   .3372108   .0379918     8.88   0.000     .2627483    .4116733
-------------+----------------------------------------------------------------
south_lnvar  |
       _cons |   -1.43893   .0096645  -148.89   0.000    -1.457872   -1.419988
-------------+----------------------------------------------------------------
smsa_mean    |
        wage |   .0139103   .0018313     7.60   0.000      .010321    .0174996
       hours |   .0003663   .0009099     0.40   0.687    -.0014172    .0021497
       _cons |   .5820585   .0361037    16.12   0.000     .5112965    .6528205
-------------+----------------------------------------------------------------
smsa_lnvar   |
       _cons |  -1.598512   .0195103   -81.93   0.000    -1.636751   -1.560272
------------------------------------------------------------------------------






(j = 1 2)

Data                               Wide   ->   Long
-----------------------------------------------------------------------------
Number of observations            2,246   ->   4,492       
Number of variables                  23   ->   23          
j variable (2 values)                     ->   subsample
xij variables:
                                  Y1 Y2   ->   Y
-----------------------------------------------------------------------------



(8 missing values generated)

(8 missing values generated)

      Source |       SS           df       MS      Number of obs   =     4,484
-------------+----------------------------------   F(5, 4478)      =    109.69
       Model |  120.488157         5  24.0976314   Prob > F        =    0.0000
    Residual |  983.768757     4,478  .219689316   R-squared       =    0.1091
-------------+----------------------------------   Adj R-squared   =    0.1081
       Total |  1104.25691     4,483  .246320971   Root MSE        =    .46871

------------------------------------------------------------------------------
           Y | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       wage1 |  -.0124053   .0017419    -7.12   0.000    -.0158202   -.0089903
       wage2 |   .0139103   .0017419     7.99   0.000     .0104953    .0173252
      hours1 |   .0047722   .0009543     5.00   0.000     .0029013    .0066431
      hours2 |   .0003663   .0009543     0.38   0.701    -.0015046    .0022372
   subsample |   .2448477   .0527214     4.64   0.000     .1414877    .3482078
       _cons |    .092363   .0833599     1.11   0.268    -.0710635    .2557896
------------------------------------------------------------------------------


 ( 1)  wage1 - wage2 = 0

       F(  1,  4478) =  114.12
            Prob > F =    0.0000



----------------------------------------------------------------------------
                      (1)             (2)             (3)             (4)   
                    south            smsa           suest         stacked   
----------------------------------------------------------------------------
main                                                                        
wage              -0.0124***       0.0139***      -0.0124***                
                  (-6.85)          (8.32)         (-6.43)                   
hours             0.00477***     0.000366         0.00477***                
                   (4.81)          (0.40)          (4.86)                   
wage1                                                             -0.0124***
                                                                  (-7.12)   
wage2                                                              0.0139***
                                                                   (7.99)   
hours1                                                            0.00477***
                                                                   (5.00)   
hours2                                                           0.000366   
                                                                   (0.38)   
subsample                                                           0.245***
                                                                   (4.64)   
_cons               0.337***        0.582***        0.337***       0.0924   
                   (8.71)         (16.27)          (8.88)          (1.11)   
----------------------------------------------------------------------------
south_lnvar                                                                 
_cons                                              -1.439***                
                                                (-148.89)                   
----------------------------------------------------------------------------
smsa_mean                                                                   
wage                                               0.0139***                
                                                   (7.60)                   
hours                                            0.000366                   
                                                   (0.40)                   
_cons                                               0.582***                
                                                  (16.12)                   
----------------------------------------------------------------------------
smsa_lnvar                                                                  
_cons                                              -1.599***                
                                                 (-81.93)                   
----------------------------------------------------------------------------
N                    2242            2242            2242            4484   
----------------------------------------------------------------------------
t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001

In this example, we are interested in comparing the effect of wage on south vs. smsa (not interesting, but just as an example). What I did is to reshape it to long format, stacking south and smsa as “Y”. Then creat interaction of other covariates with subsample indicator. Then run the regression with Y on the interaction terms.

Overlapping samples

What if we’d like to compare coefficients for two overlapping subsamples? As I mentioned, Austin Nichols gave the following example:



est clear
sysuse nlsw88, clear
ta south smsa
reg wage hours if south
est sto south
reg wage hours if smsa
est sto smsa
suest south smsa
est sto suest
preserve
expand 2
bys idcode: g n=_n
keep if (n==1&south)|(n==2&smsa)
g hours1=hours*!(n==1&south)
g hours2=hours*!(n==2&smsa)
reg wage hours? n, cl(idcode)
est sto stacked
restore
esttab south smsa suest stacked, nogaps mti
(NLSW, 1988 extract)


  Lives in |     Lives in SMSA
 the south |  Not SMSA       SMSA |     Total
-----------+----------------------+----------
 Not south |       308        996 |     1,304 
     South |       357        585 |       942 
-----------+----------------------+----------
     Total |       665      1,581 |     2,246 

      Source |       SS           df       MS      Number of obs   =       938
-------------+----------------------------------   F(1, 936)       =     12.47
       Model |  344.732583         1  344.732583   Prob > F        =    0.0004
    Residual |  25866.3404       936   27.634979   R-squared       =    0.0132
-------------+----------------------------------   Adj R-squared   =    0.0121
       Total |  26211.0729       937   27.973397   Root MSE        =    5.2569

------------------------------------------------------------------------------
        wage | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       hours |   .0623497   .0176532     3.53   0.000     .0277053    .0969941
       _cons |   4.520583   .6957145     6.50   0.000     3.155242    5.885923
------------------------------------------------------------------------------

      Source |       SS           df       MS      Number of obs   =     1,578
-------------+----------------------------------   F(1, 1576)      =     46.48
       Model |  1594.14881         1  1594.14881   Prob > F        =    0.0000
    Residual |  54048.2539     1,576  34.2945773   R-squared       =    0.0286
-------------+----------------------------------   Adj R-squared   =    0.0280
       Total |  55642.4027     1,577  35.2837049   Root MSE        =    5.8562

------------------------------------------------------------------------------
        wage | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       hours |   .0953636   .0139872     6.82   0.000     .0679281    .1227991
       _cons |   4.861519   .5443826     8.93   0.000     3.793729    5.929309
------------------------------------------------------------------------------



Simultaneous results for south, smsa                     Number of obs = 1,934

------------------------------------------------------------------------------
             |               Robust
             | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
south_mean   |
       hours |   .0623497   .0174432     3.57   0.000     .0281617    .0965378
       _cons |   4.520583   .6599613     6.85   0.000     3.227082    5.814083
-------------+----------------------------------------------------------------
south_lnvar  |
       _cons |   3.319082   .1435356    23.12   0.000     3.037758    3.600407
-------------+----------------------------------------------------------------
smsa_mean    |
       hours |   .0953636   .0132806     7.18   0.000      .069334    .1213931
       _cons |   4.861519   .4842914    10.04   0.000     3.912325    5.810713
-------------+----------------------------------------------------------------
smsa_lnvar   |
       _cons |   3.534987   .0910825    38.81   0.000     3.356469    3.713506
------------------------------------------------------------------------------



(2,246 observations created)


(1,969 observations deleted)

(7 missing values generated)

(7 missing values generated)


Linear regression                               Number of obs     =      2,516
                                                F(3, 1933)        =      40.81
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0399
                                                Root MSE          =     5.6403

                             (Std. err. adjusted for 1,934 clusters in idcode)
------------------------------------------------------------------------------
             |               Robust
        wage | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
      hours1 |   .0953636   .0132886     7.18   0.000     .0693022     .121425
      hours2 |   .0623497   .0174536     3.57   0.000     .0281198    .0965796
           n |   .3409364   .6124145     0.56   0.578    -.8601261    1.541999
       _cons |   4.179646   1.177889     3.55   0.000     1.869579    6.489713
------------------------------------------------------------------------------




----------------------------------------------------------------------------
                      (1)             (2)             (3)             (4)   
                    south            smsa           suest         stacked   
----------------------------------------------------------------------------
main                                                                        
hours              0.0623***       0.0954***       0.0623***                
                   (3.53)          (6.82)          (3.57)                   
hours1                                                             0.0954***
                                                                   (7.18)   
hours2                                                             0.0623***
                                                                   (3.57)   
n                                                                   0.341   
                                                                   (0.56)   
_cons               4.521***        4.862***        4.521***        4.180***
                   (6.50)          (8.93)          (6.85)          (3.55)   
----------------------------------------------------------------------------
south_lnvar                                                                 
_cons                                               3.319***                
                                                  (23.12)                   
----------------------------------------------------------------------------
smsa_mean                                                                   
hours                                              0.0954***                
                                                   (7.18)                   
_cons                                               4.862***                
                                                  (10.04)                   
----------------------------------------------------------------------------
smsa_lnvar                                                                  
_cons                                               3.535***                
                                                  (38.81)                   
----------------------------------------------------------------------------
N                     938            1578            1934            2516   
----------------------------------------------------------------------------
t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001

IV regression

What about IV regression?

sysuse nlsw88, clear
ivregress 2sls wage (hours=union) if south
ivregress 2sls wage (hours=union) if !south
gen hours1=hours*(south==1)
gen hours2=hours*(south==0)
gen union1=union*(south==1)
gen union2=union*(south==0)

ivregress 2sls wage south (hours? = union?)
already preserved
r(621);


(NLSW, 1988 extract)


Instrumental-variables 2SLS regression            Number of obs   =        798
                                                  Wald chi2(1)    =       2.61
                                                  Prob > chi2     =     0.1060
                                                  R-squared       =          .
                                                  Root MSE        =     9.5807

------------------------------------------------------------------------------
        wage | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
       hours |     .97819   .6050822     1.62   0.106    -.2077492    2.164129
       _cons |  -30.96026   23.32846    -1.33   0.184     -76.6832    14.76268
------------------------------------------------------------------------------
Endogenous: hours
Exogenous:  union


Instrumental-variables 2SLS regression            Number of obs   =      1,079
                                                  Wald chi2(1)    =       6.03
                                                  Prob > chi2     =     0.0140
                                                  R-squared       =          .
                                                  Root MSE        =     7.0372

------------------------------------------------------------------------------
        wage | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
       hours |   .6255843   .2546731     2.46   0.014     .1264342    1.124735
       _cons |   -14.9159   9.401508    -1.59   0.113    -33.34252    3.510714
------------------------------------------------------------------------------
Endogenous: hours
Exogenous:  union

(4 missing values generated)

(4 missing values generated)

(368 missing values generated)

(368 missing values generated)


Instrumental-variables 2SLS regression            Number of obs   =      1,877
                                                  Wald chi2(3)    =      21.75
                                                  Prob > chi2     =     0.0001
                                                  R-squared       =          .
                                                  Root MSE        =     8.2154

------------------------------------------------------------------------------
        wage | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
      hours1 |     .97819   .5188511     1.89   0.059    -.0387394    1.995119
      hours2 |   .6255843    .297311     2.10   0.035     .0428654    1.208303
       south |  -16.04435   22.81705    -0.70   0.482    -60.76495    28.67625
       _cons |   -14.9159   10.97553    -1.36   0.174    -36.42754    6.595735
------------------------------------------------------------------------------
Endogenous: hours1 hours2
Exogenous:  south union1 union2

We can see same Chow kind of test works, with IV regression, if we have the right interaction terms.

IV with fixed effects

However, when doing with a fixed effet IV, I seem to have difficulties. In this example, I use “reghdfe” to do an IV regression with fixed effect. We can also use “xtivreg2”, but “ivreghdfe” is supposed to be faster.


sysuse nlsw88, clear
gen hours1=hours*(south==1)
gen hours2=hours*(south==0)
gen union1=union*(south==1)
gen union2=union*(south==0)
ivreghdfe wage (hours=union) if south, a(race) cluster(race)
ivreghdfe wage (hours=union) if !south, a(race) cluster(race)
ivreghdfe wage south (hours? = union?) , a(race) cluster(race) 
already preserved
r(621);


(NLSW, 1988 extract)

(4 missing values generated)

(4 missing values generated)

(368 missing values generated)

(368 missing values generated)

(MWFE estimator converged in 1 iterations)

IV (2SLS) estimation
--------------------

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity and clustering on race

Number of clusters (race) =          3                Number of obs =      798
                                                      F(  1,     2) =    69.28
                                                      Prob > F      =   0.0141
Total (centered) SS     =   12186.8806                Centered R2   =  -6.4527
Total (uncentered) SS   =   12186.8806                Uncentered R2 =  -6.4527
Residual SS             =  90825.44631                Root MSE      =    10.68

------------------------------------------------------------------------------
             |               Robust
        wage | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       hours |   1.107099    .133012     8.32   0.014     .5347947    1.679404
------------------------------------------------------------------------------
Underidentification test (Kleibergen-Paap rk LM statistic):              1.756
                                                   Chi-sq(1) P-val =    0.1852
------------------------------------------------------------------------------
Weak identification test (Cragg-Donald Wald F statistic):                3.233
                         (Kleibergen-Paap rk Wald F statistic):         13.977
Stock-Yogo weak ID test critical values: 10% maximal IV size             16.38
                                         15% maximal IV size              8.96
                                         20% maximal IV size              6.66
                                         25% maximal IV size              5.53
Source: Stock-Yogo (2005).  Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
------------------------------------------------------------------------------
Hansen J statistic (overidentification test of all instruments):         0.000
                                                 (equation exactly identified)
------------------------------------------------------------------------------
Instrumented:         hours
Excluded instruments: union
Partialled-out:       _cons
                      nb: total SS, model F and R2s are after partialling-out;
                          any small-sample adjustments include partialled-out
                          variables in regressor count K
------------------------------------------------------------------------------

Absorbed degrees of freedom:
-----------------------------------------------------+
 Absorbed FE | Categories  - Redundant  = Num. Coefs |
-------------+---------------------------------------|
        race |         3           3           0    *|
-----------------------------------------------------+
* = FE nested within cluster; treated as redundant for DoF computation

(MWFE estimator converged in 1 iterations)

IV (2SLS) estimation
--------------------

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity and clustering on race

Number of clusters (race) =          3                Number of obs =     1079
                                                      F(  1,     2) =     1.41
                                                      Prob > F      =   0.3564
Total (centered) SS     =  19086.22115                Centered R2   =  -2.3302
Total (uncentered) SS   =  19086.22115                Uncentered R2 =  -2.3302
Residual SS             =  63560.97528                Root MSE      =    7.682

------------------------------------------------------------------------------
             |               Robust
        wage | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       hours |   .7023322   .5905772     1.19   0.356    -1.838717    3.243381
------------------------------------------------------------------------------
Underidentification test (Kleibergen-Paap rk LM statistic):              0.789
                                                   Chi-sq(1) P-val =    0.3745
------------------------------------------------------------------------------
Weak identification test (Cragg-Donald Wald F statistic):                5.501
                         (Kleibergen-Paap rk Wald F statistic):          3.772
Stock-Yogo weak ID test critical values: 10% maximal IV size             16.38
                                         15% maximal IV size              8.96
                                         20% maximal IV size              6.66
                                         25% maximal IV size              5.53
Source: Stock-Yogo (2005).  Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
------------------------------------------------------------------------------
Hansen J statistic (overidentification test of all instruments):         0.000
                                                 (equation exactly identified)
------------------------------------------------------------------------------
Instrumented:         hours
Excluded instruments: union
Partialled-out:       _cons
                      nb: total SS, model F and R2s are after partialling-out;
                          any small-sample adjustments include partialled-out
                          variables in regressor count K
------------------------------------------------------------------------------

Absorbed degrees of freedom:
-----------------------------------------------------+
 Absorbed FE | Categories  - Redundant  = Num. Coefs |
-------------+---------------------------------------|
        race |         3           3           0    *|
-----------------------------------------------------+
* = FE nested within cluster; treated as redundant for DoF computation

(MWFE estimator converged in 1 iterations)

IV (2SLS) estimation
--------------------

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity and clustering on race

Number of clusters (race) =          3                Number of obs =     1877
                                                      F(  3,     2) =  1036.24
                                                      Prob > F      =   0.0010
Total (centered) SS     =    32142.319                Centered R2   =  -3.9041
Total (uncentered) SS   =    32142.319                Uncentered R2 =  -3.9041
Residual SS             =  157627.5718                Root MSE      =    9.174

------------------------------------------------------------------------------
             |               Robust
        wage | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
      hours1 |   1.142036   .0650507    17.56   0.003     .8621454    1.421927
      hours2 |   .6880691   .5265185     1.31   0.321    -1.577357    2.953495
       south |  -19.74773   22.10811    -0.89   0.466    -114.8712    75.37577
------------------------------------------------------------------------------
Underidentification test (Kleibergen-Paap rk LM statistic):              1.793
                                                   Chi-sq(1) P-val =    0.1806
------------------------------------------------------------------------------
Weak identification test (Cragg-Donald Wald F statistic):                3.584
                         (Kleibergen-Paap rk Wald F statistic):          8.484
Stock-Yogo weak ID test critical values: 10% maximal IV size              7.03
                                         15% maximal IV size              4.58
                                         20% maximal IV size              3.95
                                         25% maximal IV size              3.63
Source: Stock-Yogo (2005).  Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
------------------------------------------------------------------------------
Warning: estimated covariance matrix of moment conditions not of full rank.
         overidentification statistic not reported, and standard errors and
         model tests should be interpreted with caution.
Possible causes:
         number of clusters insufficient to calculate robust covariance matrix
         singleton dummy variable (dummy with one 1 and N-1 0s or vice versa)
partial option may address problem.
------------------------------------------------------------------------------
Instrumented:         hours1 hours2
Included instruments: south
Excluded instruments: union1 union2
Partialled-out:       _cons
                      nb: total SS, model F and R2s are after partialling-out;
                          any small-sample adjustments include partialled-out
                          variables in regressor count K
------------------------------------------------------------------------------

Absorbed degrees of freedom:
-----------------------------------------------------+
 Absorbed FE | Categories  - Redundant  = Num. Coefs |
-------------+---------------------------------------|
        race |         3           3           0    *|
-----------------------------------------------------+
* = FE nested within cluster; treated as redundant for DoF computation

We can see I failed to replicate the first two regressions in the third regression. Why? Because we’ll need the fixed effect to be interacted with the subsample indicator to make it right.

Here is another try:


sysuse nlsw88, clear
gen hours1=hours*(south==1)
gen hours2=hours*(south==0)
gen union1=union*(south==1)
gen union2=union*(south==0)

gen race1=race*(south==1)
gen race2=race*(south==0)


ivreghdfe wage (hours=union) if south, a(race) cluster(race) 
ivreghdfe wage (hours=union) if !south, a(race) cluster(race)
ivregress 2sls wage south (hours? = union?) i.race?, cluster(race) 
already preserved
r(621);


(NLSW, 1988 extract)

(4 missing values generated)

(4 missing values generated)

(368 missing values generated)

(368 missing values generated)



(MWFE estimator converged in 1 iterations)

IV (2SLS) estimation
--------------------

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity and clustering on race

Number of clusters (race) =          3                Number of obs =      798
                                                      F(  1,     2) =    69.28
                                                      Prob > F      =   0.0141
Total (centered) SS     =   12186.8806                Centered R2   =  -6.4527
Total (uncentered) SS   =   12186.8806                Uncentered R2 =  -6.4527
Residual SS             =  90825.44631                Root MSE      =    10.68

------------------------------------------------------------------------------
             |               Robust
        wage | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       hours |   1.107099    .133012     8.32   0.014     .5347947    1.679404
------------------------------------------------------------------------------
Underidentification test (Kleibergen-Paap rk LM statistic):              1.756
                                                   Chi-sq(1) P-val =    0.1852
------------------------------------------------------------------------------
Weak identification test (Cragg-Donald Wald F statistic):                3.233
                         (Kleibergen-Paap rk Wald F statistic):         13.977
Stock-Yogo weak ID test critical values: 10% maximal IV size             16.38
                                         15% maximal IV size              8.96
                                         20% maximal IV size              6.66
                                         25% maximal IV size              5.53
Source: Stock-Yogo (2005).  Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
------------------------------------------------------------------------------
Hansen J statistic (overidentification test of all instruments):         0.000
                                                 (equation exactly identified)
------------------------------------------------------------------------------
Instrumented:         hours
Excluded instruments: union
Partialled-out:       _cons
                      nb: total SS, model F and R2s are after partialling-out;
                          any small-sample adjustments include partialled-out
                          variables in regressor count K
------------------------------------------------------------------------------

Absorbed degrees of freedom:
-----------------------------------------------------+
 Absorbed FE | Categories  - Redundant  = Num. Coefs |
-------------+---------------------------------------|
        race |         3           3           0    *|
-----------------------------------------------------+
* = FE nested within cluster; treated as redundant for DoF computation

(MWFE estimator converged in 1 iterations)

IV (2SLS) estimation
--------------------

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity and clustering on race

Number of clusters (race) =          3                Number of obs =     1079
                                                      F(  1,     2) =     1.41
                                                      Prob > F      =   0.3564
Total (centered) SS     =  19086.22115                Centered R2   =  -2.3302
Total (uncentered) SS   =  19086.22115                Uncentered R2 =  -2.3302
Residual SS             =  63560.97528                Root MSE      =    7.682

------------------------------------------------------------------------------
             |               Robust
        wage | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       hours |   .7023322   .5905772     1.19   0.356    -1.838717    3.243381
------------------------------------------------------------------------------
Underidentification test (Kleibergen-Paap rk LM statistic):              0.789
                                                   Chi-sq(1) P-val =    0.3745
------------------------------------------------------------------------------
Weak identification test (Cragg-Donald Wald F statistic):                5.501
                         (Kleibergen-Paap rk Wald F statistic):          3.772
Stock-Yogo weak ID test critical values: 10% maximal IV size             16.38
                                         15% maximal IV size              8.96
                                         20% maximal IV size              6.66
                                         25% maximal IV size              5.53
Source: Stock-Yogo (2005).  Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
------------------------------------------------------------------------------
Hansen J statistic (overidentification test of all instruments):         0.000
                                                 (equation exactly identified)
------------------------------------------------------------------------------
Instrumented:         hours
Excluded instruments: union
Partialled-out:       _cons
                      nb: total SS, model F and R2s are after partialling-out;
                          any small-sample adjustments include partialled-out
                          variables in regressor count K
------------------------------------------------------------------------------

Absorbed degrees of freedom:
-----------------------------------------------------+
 Absorbed FE | Categories  - Redundant  = Num. Coefs |
-------------+---------------------------------------|
        race |         3           3           0    *|
-----------------------------------------------------+
* = FE nested within cluster; treated as redundant for DoF computation

note: 3.race1 omitted because of collinearity.
note: 3.race2 omitted because of collinearity.

Instrumental-variables 2SLS regression            Number of obs   =      1,877
                                                  Wald chi2(7)    =  101696.08
                                                  Prob > chi2     =     0.0000
                                                  R-squared       =          .
                                                  Root MSE        =     9.0693

                                   (Std. err. adjusted for 3 clusters in race)
------------------------------------------------------------------------------
             |               Robust
        wage | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
      hours1 |   1.107099   .1085357    10.20   0.000     .8943732    1.319825
      hours2 |   .7023322   .4819806     1.46   0.145    -.2423324    1.646997
       south |  -21.52299   22.35225    -0.96   0.336    -65.33259    22.28662
             |
       race1 |
          1  |   3.054296   .1451752    21.04   0.000     2.769758    3.338834
          2  |   1.987268    .176538    11.26   0.000      1.64126    2.333277
          3  |          0  (omitted)
             |
       race2 |
          1  |  -.4816127    .434723    -1.11   0.268    -1.333654    .3704287
          2  |  -2.065527   .7694573    -2.68   0.007    -3.573635   -.5574181
          3  |          0  (omitted)
             |
       _cons |  -17.01633   18.01689    -0.94   0.345    -52.32879    18.29614
------------------------------------------------------------------------------
Endogenous: hours1 hours2
Exogenous:  south 1.race1 2.race1 1.race2 2.race2 union1 union2

This works. Basically we use dummies which are interactions of subsample indicator and the fixed effect dummies. This would not work if we have a lot of fixed effect units.

But we can trick “reghdfe” to use a two way fixed effect option:

This way we can do a test to see whether hours effect differs between these two samples.


sysuse nlsw88, clear
gen hours1=hours*(south==1)
gen hours2=hours*(south==0)
gen union1=union*(south==1)
gen union2=union*(south==0)
gen race1=race*(south==1)
gen race2=race*(south==0)

ivreghdfe wage south (hours? = union?) , a(race1 race2) cluster(race)
test _b[hours1]-_b[hours2]=0
already preserved
r(621);


(NLSW, 1988 extract)

(4 missing values generated)

(4 missing values generated)

(368 missing values generated)

(368 missing values generated)



note: variable #4 is probably collinear with the fixed effects (all partialled-
> out values are close to zero; tol = 1.0e-09)
(MWFE estimator converged in 2 iterations)
warning: -ranktest- error in calculating underidentification test statistics;
         may be caused by collinearities
warning: -ranktest- error in calculating weak identification test statistics;
         may be caused by collinearities

IV (2SLS) estimation
--------------------

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity and clustering on race

Number of clusters (race) =          3                Number of obs =     1877
                                                      F(  2,     2) = 13010.62
                                                      Prob > F      =   0.0001
Total (centered) SS     =  31273.10174                Centered R2   =  -3.9367
Total (uncentered) SS   =  31273.10174                Uncentered R2 =  -3.9367
Residual SS             =  154386.4216                Root MSE      =    9.089

------------------------------------------------------------------------------
             |               Robust
        wage | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
      hours1 |   1.107099   .1331773     8.31   0.014     .5340838    1.680115
      hours2 |   .7023322   .5914076     1.19   0.357     -1.84229    3.246954
       south |          0  (omitted)
------------------------------------------------------------------------------
Underidentification test (Kleibergen-Paap rk LM statistic):                  .
                                                   Chi-sq(.) P-val =         .
------------------------------------------------------------------------------
Weak identification test (Cragg-Donald Wald F statistic):                    .
                         (Kleibergen-Paap rk Wald F statistic):              .
Stock-Yogo weak ID test critical values: 10% maximal IV size              7.03
                                         15% maximal IV size              4.58
                                         20% maximal IV size              3.95
                                         25% maximal IV size              3.63
Source: Stock-Yogo (2005).  Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
------------------------------------------------------------------------------
Warning: estimated covariance matrix of moment conditions not of full rank.
         overidentification statistic not reported, and standard errors and
         model tests should be interpreted with caution.
Possible causes:
         number of clusters insufficient to calculate robust covariance matrix
         singleton dummy variable (dummy with one 1 and N-1 0s or vice versa)
partial option may address problem.
------------------------------------------------------------------------------
Collinearities detected among instruments: 1 instrument(s) dropped
Instrumented:         hours1 hours2
Included instruments: south
Excluded instruments: union1 union2
Partialled-out:       _cons
                      nb: total SS, model F and R2s are after partialling-out;
                          any small-sample adjustments include partialled-out
                          variables in regressor count K
------------------------------------------------------------------------------

Absorbed degrees of freedom:
-----------------------------------------------------+
 Absorbed FE | Categories  - Redundant  = Num. Coefs |
-------------+---------------------------------------|
       race1 |         4           0           4     |
       race2 |         4           2           2     |
-----------------------------------------------------+


 ( 1)  hours1 - hours2 = 0

       F(  1,     2) =    0.31
            Prob > F =    0.6325

Chow test with different covariates

What if we want to compare coefficients across equations with different covariates? We can still do Chow test.

Say you have \[ Y_1 = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon_1\] \[ Y_2 = \gamma_0 + \gamma_1 X_1 + \epsilon_2\]

The way you can think of the second equation is that you still have \(X_2\) but it is just a constant, which means it will go into the constant term. \[ Y_2 = \gamma_0 + \gamma_1 X_1 + \gamma_2 C + \epsilon_2\]

So we can just replace \(X_2\) with a constant in the sample for \(Y_2\) and still do Chow test.

sysuse nlsw88, clear
reg south wage hours tenure
est sto south
reg smsa wage hours
est sto smsa
suest south smsa
est sto suest
preserve
gen Y1=south
gen Y2=smsa
gen id=_n
reshape long Y, i(id) j(subsample)
gen wage1=wage*(subsample==1)
gen wage2=wage*(subsample==2)
gen hours1=hours*(subsample==1)
gen hours2=hours*(subsample==2)
replace tenure=1 if subsample==2
gen tenure1= tenure*(subsample==1)
gen tenure2= tenure*(subsample==2)
reg Y wage? hours? tenure? subsample
est sto chow
test _b[hours1]-_b[hours2]=0
esttab  suest chow, nogaps mti
(NLSW, 1988 extract)

      Source |       SS           df       MS      Number of obs   =     2,227
-------------+----------------------------------   F(3, 2223)      =     20.30
       Model |  14.4507388         3  4.81691294   Prob > F        =    0.0000
    Residual |  527.507052     2,223   .23729512   R-squared       =    0.0267
-------------+----------------------------------   Adj R-squared   =    0.0254
       Total |  541.957791     2,226  .243467112   Root MSE        =    .48713

------------------------------------------------------------------------------
       south | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
        wage |  -.0119584   .0018359    -6.51   0.000    -.0155586   -.0083583
       hours |    .004828   .0010072     4.79   0.000     .0028528    .0068031
      tenure |  -.0024032   .0019221    -1.25   0.211    -.0061726    .0013661
       _cons |    .346361   .0392121     8.83   0.000     .2694648    .4232573
------------------------------------------------------------------------------

      Source |       SS           df       MS      Number of obs   =     2,242
-------------+----------------------------------   F(2, 2239)      =     36.17
       Model |  14.6274602         2  7.31373012   Prob > F        =    0.0000
    Residual |  452.719551     2,239  .202197209   R-squared       =    0.0313
-------------+----------------------------------   Adj R-squared   =    0.0304
       Total |  467.347012     2,241  .208543959   Root MSE        =    .44966

------------------------------------------------------------------------------
        smsa | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
        wage |   .0139103   .0016711     8.32   0.000     .0106332    .0171873
       hours |   .0003663   .0009155     0.40   0.689    -.0014291    .0021616
       _cons |   .5820585   .0357648    16.27   0.000      .511923    .6521941
------------------------------------------------------------------------------



Simultaneous results for south, smsa                     Number of obs = 2,242

------------------------------------------------------------------------------
             |               Robust
             | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
south_mean   |
        wage |  -.0119584    .001953    -6.12   0.000    -.0157862   -.0081307
       hours |    .004828   .0009971     4.84   0.000     .0028737    .0067822
      tenure |  -.0024032   .0018928    -1.27   0.204    -.0061131    .0013066
       _cons |    .346361    .038473     9.00   0.000     .2709554    .4217667
-------------+----------------------------------------------------------------
south_lnvar  |
       _cons |  -1.438451   .0096359  -149.28   0.000    -1.457337   -1.419565
-------------+----------------------------------------------------------------
smsa_mean    |
        wage |   .0139103   .0018313     7.60   0.000      .010321    .0174996
       hours |   .0003663   .0009099     0.40   0.687    -.0014172    .0021497
       _cons |   .5820585   .0361037    16.12   0.000     .5112965    .6528205
-------------+----------------------------------------------------------------
smsa_lnvar   |
       _cons |  -1.598512   .0195103   -81.93   0.000    -1.636751   -1.560272
------------------------------------------------------------------------------






(j = 1 2)

Data                               Wide   ->   Long
-----------------------------------------------------------------------------
Number of observations            2,246   ->   4,492       
Number of variables                  23   ->   23          
j variable (2 values)                     ->   subsample
xij variables:
                                  Y1 Y2   ->   Y
-----------------------------------------------------------------------------



(8 missing values generated)

(8 missing values generated)

(2,222 real changes made)

(15 missing values generated)

(15 missing values generated)

note: subsample omitted because of collinearity.

      Source |       SS           df       MS      Number of obs   =     4,469
-------------+----------------------------------   F(6, 4462)      =     91.07
       Model |  120.039676         6  20.0066126   Prob > F        =    0.0000
    Residual |  980.226603     4,462  .219683237   R-squared       =    0.1091
-------------+----------------------------------   Adj R-squared   =    0.1079
       Total |  1100.26628     4,468  .246254762   Root MSE        =     .4687

------------------------------------------------------------------------------
           Y | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       wage1 |  -.0119584   .0017664    -6.77   0.000    -.0154215   -.0084954
       wage2 |   .0139103   .0017418     7.99   0.000     .0104954    .0173252
      hours1 |    .004828   .0009691     4.98   0.000      .002928    .0067279
      hours2 |   .0003663   .0009543     0.38   0.701    -.0015046    .0022371
     tenure1 |  -.0024032   .0018494    -1.30   0.194     -.006029    .0012225
     tenure2 |   .2356975   .0530397     4.44   0.000     .1317134    .3396816
   subsample |          0  (omitted)
       _cons |    .346361   .0377289     9.18   0.000     .2723936    .4203285
------------------------------------------------------------------------------



 ( 1)  hours1 - hours2 = 0

       F(  1,  4462) =   10.76
            Prob > F =    0.0010


--------------------------------------------
                      (1)             (2)   
                    suest            chow   
--------------------------------------------
main                                        
wage              -0.0120***                
                  (-6.12)                   
hours             0.00483***                
                   (4.84)                   
tenure           -0.00240                   
                  (-1.27)                   
wage1                             -0.0120***
                                  (-6.77)   
wage2                              0.0139***
                                   (7.99)   
hours1                            0.00483***
                                   (4.98)   
hours2                           0.000366   
                                   (0.38)   
tenure1                          -0.00240   
                                  (-1.30)   
tenure2                             0.236***
                                   (4.44)   
subsample                               0   
                                      (.)   
_cons               0.346***        0.346***
                   (9.00)          (9.18)   
--------------------------------------------
south_lnvar                                 
_cons              -1.438***                
                (-149.28)                   
--------------------------------------------
smsa_mean                                   
wage               0.0139***                
                   (7.60)                   
hours            0.000366                   
                   (0.40)                   
_cons               0.582***                
                  (16.12)                   
--------------------------------------------
smsa_lnvar                                  
_cons              -1.599***                
                 (-81.93)                   
--------------------------------------------
N                    2242            4469   
--------------------------------------------
t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001

We can see Chow type of “stacking” method generates the same result as “suest” in terms of point estimates. For standard errors you can use “robust” or “cluster” option in “reg” command.

Conclusion

For testing cross equations hypotheses, we can use “suest” or Chow type “stacking” method. Sometimes people use “sureg”. I prefer not use “sureg”. It is a GLS estimator for all the equations together. It relies on assumptions of the error term of the whole system. It assumes homoscedasticity for example. If it’s true, then GLS is more efficient; if not, then biased. If the equations have the same covariates, then it returns the same coefficient estimates as the single equation estimates. If different covariates, then different estimates as the single equation estimates.

The nice thing about Chow test is that it is very flexible, and it does not rely on Stata’s internal functions. You can do it with R or other programs. And it works for complicated models too, usually, as long as the single equation works. “suest” needs the results stored before hand, which may not be available even within stata.